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Abstract

Clusterwise linear regression (CLR) aims to simultaneously partition a data
into a given number of clusters and find regression coefficients for each clus-
ter. In this paper, we propose a novel approach to solve the CLR problem.
The main idea is to utilize the support vector machine (SVM) approach
to model the CLR problem by using the SVM for regression to approximate
each cluster. This new formulation of CLR is represented as an unconstrained
nonsmooth optimization problem, where the objective function is a difference
of convex (DC) functions. A method based on the combination of the in-
cremental algorithm and the double bundle method for DC optimization is
designed to solve it. Numerical experiments are made to validate the relia-
bility of the new formulation and the efficiency of the proposed method. The
results show that the SVM approach is beneficial in solving CLR problems,
especially, when there are outliers in data.

Keywords: Nonsmooth optimization, Support vector machines, Clusterwise
regression, Incremental algorithm, Bundle method, DC functions
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1 Introduction

Clusterwise linear regression (CLR) is a technique for fitting multiple hyper-
planes to mutually exclusive subsets of observations of a data set [32]. It is
a combination of two techniques: clustering and regression. Applications of
CLR include, for example, the consumer benefit segmentation [36], market
segmentation stock-exchange [28], metal inert gas welding process [12], rain-
fall prediction [2] and PM10 prediction [27]. To date, different models of the
CLR problem have been proposed and algorithms have been developed for
them. These algorithms include those based on extensions of k-means [32]
and expectation-maximization (EM) [11] as well as on mixed integer non-
linear programming [6, 10], nonsmooth optimization [3, 4, 5] and mixture
models [9, 13].

In this paper, a new approach for solving CLR problems is proposed using
the support vector machines (SVM) for the regression method [8, 31]. By
applying the SVM formulation for regression, the CLR problem is expressed
as a constrained nonsmooth optimization problem. Then using the penalty
function this problem is replaced by an unconstrained nonsmooth optimiza-
tion problem. The objective function in the latter problem is represented as
a difference of convex (DC) functions allowing us to use some results from
convex analysis and optimization. To utilize the DC structure, the proposed
algorithm uses the double bundle method (DBDC) [18] developed for non-
smooth DC optimization. However, the DBDC is a local method. Therefore,
to obtain global or near global solutions, the DBDC is combined with an
incremental approach introduced in [3] to design a more accurate algorithm
for solving the nonconvex CLR problem. The algorithm is tested using some
data sets for regression to validate the usability of the new SVM based for-
mulation for the CLR problem.

The rest of the paper is organized as follows. Section 2 provides some pre-
liminaries. The SVM reformulations of the CLR and auxiliary CLR problems
are given in Section 3. Section 4 presents the new method DB-SVM-CLR
combining the double bundle method DBDC and the incremental algorithm
to solve CLR problems. Numerical results are reported in Section 5 and
Section 6 contains some concluding remarks.

2 Preliminaries

We start with some definitions and results from nonsmooth analysis and DC
optimization. For more details we refer to [1, 7, 16, 22, 26, 33, 35].

We denote by R
n the n-dimensional Euclidean space. The inner prod-

uct is denoted by uTv =
∑n

i=1 uivi and the associated norm by ‖u‖ =
(uTu)1/2,u,v ∈ R

n. The set B(x; ε) = {y ∈ R
n | ‖y − x‖ < ε} is the
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open ball centered at x with the radius ε > 0. The notation "conv" is used
for a convex hull of a set and "cl " for a closure of a set.

Let f : Rn → R be a convex function. Its subdifferential at x ∈ R
n is

given by [29]

∂cf(x) =
{

ξ ∈ R
n | f(y) − f(x) ≥ ξT (y − x) for all y ∈ R

n
}

being a nonempty, convex and compact set. For convex functions, we have
some useful subdifferential calculus rules. The following lemma presents two
of them.

Lemma 2.1. [1] Let functions f i : Rn → R for i = 1, . . . , k be convex. Then

(i) the function g(x) =
∑k

i=1 f
i(x) is convex and its subdifferential is

∂gc(x) =
k

∑

i=1

∂f i
c(x).

(ii) the function h(x) = max{ f i(x) | i = 1, . . . , k} is convex and its sub-
differential is

∂ch(x) = conv{ ∂f i
c(x) | i ∈ I(x)},

where I(x) = { i ∈ {1, . . . , k} | f i(x) = h(x)}.

A function f : Rn → R is called locally Lipschitz on R
n if for any bounded

subset X ⊂ R
n there exists L > 0 such that

|f(x) − f(y)| ≤ L‖x − y‖ for all x,y ∈ X.

For a locally Lipschitz function f , the generalized directional derivative [7]
at a point x ∈ R

n with respect to a direction d ∈ R
n is

f 0(x;d) = lim sup
y→x,α↓0

f(y + αd) − f(y)

α
,

and the generalized subdifferential ∂f(x) at x ∈ R
n can be defined as

∂f(x) =
{

ξ ∈ R
n | f 0(x;d) ≥ ξTd for all d ∈ R

n
}

.

Each vector ξ ∈ ∂f(x) is called a subgradient. Since ∂f(x) = ∂cf(x), x ∈ R
n

holds for convex functions [7], we will use the notation ∂f also for subdiffer-
entials of convex functions.

The Goldstein ε-subdifferential of a locally Lipschitz function f with ε ≥ 0
at a point x ∈ R

n is [25]

∂G
ε f(x) = cl conv{ ∂f(y) |y ∈ B(x; ε)}.

This subdifferential is a generalization of ∂f(x) since ∂f(x) ⊆ ∂G
ε f(x) for

each ε ≥ 0 and ∂G
0 f(x) = ∂f(x).
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Definition 2.2. A function f : Rn → R is called a DC function if there exist
two convex fuctions f 1, f 2 : Rn → R such that

f(x) = f 1(x) − f 2(x).

Here, f 1 − f 2 is a DC decomposition of f and convex functions f 1 and f 2

are called DC components. DC functions are locally Lipschitz and typically
nonconvex. If f is nonsmooth then at least one of the DC components
is nonsmooth. One benefit of DC functions is that they preserve the DC
structure under some simple operations frequently used in optimization as
the following lemma demonstrates.

Lemma 2.3. [35] Let fi = f 1
i − f 2

i for i = 1, . . . , k be DC functions. Then

(i) g(x) = min{ fi(x) | i = 1, . . . , k} is a DC function and its DC decom-
position g = g1 − g2 can be written with the DC components

g1(x) =
k

∑

i=1

f 1

i (x) and g2(x) = max
i=1,...,k







f 2

i (x) +
k

∑

j=1,j 6=i

f 1

j (x)







.

(ii) h(x) = max{ fi(x) | i = 1, . . . , k} is a DC function and its DC decom-
position h = h1 − h2 can be written with the DC components

h1(x) = max
i=1,...,k







f 1

i (x) +
k

∑

j=1,j 6=i

f 2

j (x)







and h2(x) =
k

∑

i=1

f 2

i (x).

An unconstrained DC programming problem is formulated as






min f(x) = f 1(x) − f 2(x)

s. t. x ∈ R
n.

(1)

For a point x∗ ∈ R
n to be a local minimizer of problem (1), it is necessary

that ∂f 2(x∗) ⊆ ∂f 1(x∗) [34]. Points satisfying this condition are called
inf-stationary. This condition is not always easy to check as it requires
the calculation of the whole subdifferentials. Therefore, in most algorithms
weaker necessary conditions are used:

0 ∈ ∂f(x∗) (Clarke stationarity)

and

∂f 1(x∗) ∩ ∂f 2(x∗) 6= ∅ (criticality).

It is known that any Clarke stationary point is also critical. However, the
opposite claim is not always true.
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3 SVM based clusterwise linear regression

In this section, we introduce a new formulation of the CLR problem. The
idea is to apply the SVM approach to model this problem. This differs from
the SVM for general regression problems since instead of regression with
only one regression function we consider the SVM for CLR problems, where
several regression functions are fitted. In addition, we give two different DC
decompositions for the SVM-CLR formulation. Moreover, we introduce the
auxiliary SVM-CLR problem used to find promising starting points for the
original SVM-CLR problem. The SVM for general regression problems with
one linear function is discussed in [8, 31].

Suppose that we are given a finite data set A = {(ai, bi) ∈ R
n × R | i =

1, . . . , m}. The aim of the CLR is twofold. The data set A is partitioned into
k clusters and at the same time each cluster is approximated by one linear
function. To achieve this goal, we need to optimize the overall fit. In what
follows, let Aj for j = 1, . . . , k be clusters such that

Aj 6= ∅, Aj
⋂

Al = ∅, j, l = 1, . . . , k, l 6= j and A =
k

⋃

j=1

Aj ,

and {xj, yj} be the corresponding linear regression coefficients computed
using solely data points from the cluster Aj, j = 1, . . . , k.

3.1 SVM in linear regression

We start with the brief description of the SVM approach for linear regression,
where the aim is to fit one hyperplane f (linear function) into the given data
set A with a precision ε > 0. Therefore, in ε-SVM linear regression we define
the function f as follows [8, 31]

f(a) = xTa + y,

and try to determine the regression coefficients x ∈ R
n and y ∈ R in such

a way that for each point (ai, bi) ∈ A the deviation between f(ai) and the
actually obtained target bi is at most ε. Moreover, the function f is required
to be as flat as possible meaning that the smaller the norm of x is the better.

The above mentioned problem can be formulated as the following non-
smooth optimization problem



















min 1

2
‖x‖2

s. t. |xTai + y − bi| ≤ ε, i = 1, . . . , m

x ∈ R
n, y ∈ R.

(2)
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To obtain a solution for (2), we need to have at least one feasible point. This,
however, requires the existence of the hyperplane f approximating all points
(ai, bi) ∈ A with the precision ε. Since this requirement is not always possible
to fulfill in practice it is often more convenient to relax the constraints to
achieve feasibility. By introducing a regularization parameter C > 0 and
applying the penalty function approach, problem (2) can be reformulated as
an unconstrained convex nonsmooth optimization problem







min 1

2
‖x‖2 + C

∑m
i=1 max

(

0,
∣

∣

∣xTai + y − bi

∣

∣

∣ − ε
)

s. t. x ∈ R
n, y ∈ R.

(3)

From this formulation it is easy to see that we can tolerate small deviations
from hyperplanes since they are not penalized. This gives us more "freedom"
in the solution process since all points are acceptable. In practice, it is
common to have some noise in data sets and, due to this, it is more reasonable
to allow small perturbations from the hyperplanes.

3.2 Formulation of SVM-CLR problem

In SVM-CLR, we are looking for k hyperplanes to approximate the data set
A with a precision ε > 0. The regression coefficients of these hyperplanes
are denoted by {x1, y1}, . . . , {x

k, yk} where xi ∈ R
n, yi ∈ R and, in what

follows, the vectors x = (x1,x2, . . . ,xk)T ∈ R
nk and y = (y1, y2, . . . , yk)T ∈

R
k represent the combined values of these coefficients. Moreover, a point

(ai, bi) ∈ A is associated with the closest hyperplane. In the spirit of (2),
the SVM-CLR problem can be formulated as follows























min 1

2

∑k
j=1 ‖xj‖2

s. t. min
j=1,...,k

∣

∣

∣(xj)Tai + yj − bi

∣

∣

∣ ≤ ε, i = 1, . . . , m

x ∈ R
nk, y ∈ R

k.

By utilizing the same strategy as in the previous subsection, we are able to
write the unconstrained nonsmooth version of the SVM-CLR problem as







min Fk(x,y)

s. t. x ∈ R
nk, y ∈ R

k
(4)

with the objective function

Fk(x,y) =
1

2

k
∑

j=1

‖xj‖2 + C
m

∑

i=1

max
(

0, min
j=1,...,k

∣

∣

∣(xj)Tai + yj − bi

∣

∣

∣ − ε

)

. (5)

It is worth noting that unlike (3) problem (4) is nonconvex since we fit more
than one function at a time.
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Next, we give a DC representation for the function Fk. To simplify the
notations, we denote by

ei(x
j, yj) =

∣

∣

∣(xj)Tai + yj − bi

∣

∣

∣

the error of the point (ai, bi) ∈ A from the hyperplane with the regression
coefficients {xj, yj}.

Proposition 3.1. The function Fk defined by (5) is DC and its DC decom-
position is

Fk(x,y) = F 1

k (x,y) − F 2

k (x,y),

where the DC components are

F 1

k (x,y) =
1

2

k
∑

j=1

‖xj‖2 + C
m

∑

i=1

max







k
∑

j=1

ei(x
j, yj), max

j=1,...,k

k
∑

t=1,t6=j

ei(x
t, yt) + ε







and F 2

k (x,y) = C
m

∑

i=1



 max
j=1,...,k

k
∑

t=1,t6=j

ei(x
t, yt) + ε



.

Proof. Consider the function

ψi(x,y) = min
j=1,...,k

ei(x
j, yj) for i = 1, . . . , m,

which is a minimum of convex piecewise linear functions. The function ψi is
of the form presented in the case (i) of Lemma 2.3 since the convex function
ei can be presented as a DC function f = f 1 − f 2, where f 1 = ei and f 2 = 0.
We get

ψi(x,y) = ψ1

i (x,y) − ψ2

i (x,y)

with the DC components

ψ1

i (x,y) =
k

∑

j=1

ei(x
j, yj) and ψ2

i (x,y) = max
j=1,...,k

k
∑

t=1,t6=j

ei(x
t, yt).

Both functions ψ1
i and ψ2

i are piecewise linear and convex since ψ1
i is a sum of

convex piecewise linear functions and ψ2
i is a maximum of convex piecewise

linear functions.
Next, consider the function

ϕi(x,y) = max {0, ψi(x,y) − ε} for i = 1, . . . , m,

which can be represented as a difference of two convex functions ϕ1
i and ϕ2

i

by utilizing the case (ii) of Lemma 2.3:

ϕi(x,y) = ϕ1
i (x,y) − ϕ2

i (x,y),
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where

ϕ1
i (x,y) = max

(

ψ1
i (x,y), ψ2

i (x,y) + ε
)

and ϕ2
i (x,y) = ψ2

i (x,y) + ε.

Therefore, the function Fk can be rewritten as

Fk(x,y) =
1

2

k
∑

j=1

‖xj‖2 + C
m

∑

i=1

ϕi(x,y),

and its DC representation is

Fk(x,y) = F 1
k (x,y) − F 2

k (x,y)

with the DC components

F 1

k (x,y) =
1

2

k
∑

j=1

‖xj‖2 + C
m

∑

i=1

ϕ1

i (x,y) and F 2

k (x,y) = C
m

∑

i=1

ϕ2

i (x,y).

This completes the proof.

It is worth to note that each DC function has an infinite number of
different DC decompositions. The DC decomposition of the objective Fk

presented in Proposition 3.1 is only one option among the set of possible
ones. Since the selected DC decomposition can affect the performance of the
algorithm we present an alternative DC representation for Fk.

Proposition 3.2. For the DC function Fk defined by (5), an alternative DC
decomposition is

Fk(x,y) = F̃ 1

k (x,y) − F̃ 2

k (x,y)

with the DC components

F̃ 1
k (x,y) =

1

2

k
∑

j=1

‖xj‖2 + C
m

∑

i=1

k
∑

j=1

max
{

0, ei(x
j, yj) − ε

}

and

F̃ 2
i (x,y) = C

m
∑

i=1

max
j=1,...,k

k
∑

t=1,t6=j

max
{

0, ei(x
t, yt) − ε

}

.

Proof. The function Fk, defined in (5), can be rewritten as

F̃k(x,y) =
1

2

k
∑

j=1

‖xj‖2 + C
m

∑

i=1

min
j=1,...,k

{

max
{

0, ei(x
j, yj) − ε

}

}

,

which is an alternative representation for the objective function Fk. To prove
this we show that

min
j=1,...,k

{

max
{

0, ei(x
j, yj) − ε

}

}

= max
{

0, min
j=1,...,k

ei(x
j, yj) − ε

}

. (6)
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It is clear that both sides of (6) are non-negative. Assume first minj=1,...,k ei(x
j, yj) ≤

ε which implies that there exists at least one index l ∈ {1, . . . , k} such that
max{0, ei(x

l, yl) − ε} = 0. This yields

min
j=1,...,k

{

max{0, ei(x
j, yj) − ε}

}

= 0 = max
{

0, min
j=1,...,k

ei(x
j, yj) − ε

}

.

On the other hand, if minj=1,...,k ei(x
j, yj) > ε, then we obtain

min
j=1,...,k

{

max{0, ei(x
j, yj) − ε}

}

= min
j=1,...,k

{

ei(x
j, yj) − ε

}

= max
{

0, min
j=1,...,k

ei(x
j, yj) − ε

}

.

Therefore, equality (6) is true and the functions F̃k and Fk are identical.

In addition, using Lemma 2.3 we notice that for the function

gi(x,y) = min
j=1,...,k

{

max
{

0, ei(x
j, yj) − ε

}

}

the DC decomposition is

gi(x,y) = g1

i (x,y) − g2

i (x,y),

where the DC components are selected as

g1

i (x,y) =
k

∑

j=1

max
{

0, ei(x
j, yj) − ε

}

and

g2

i (x,y) = max
j=1,...,k

k
∑

t=1,t6=j

max
{

0, ei(x
t, yt) − ε

}

.

Using this result in the alternative representation F̃k of the objective Fk, we
can write the DC decomposition of Fk in the form

Fk(x,y) = F̃ 1

k (x,y) − F̃ 2

k (x,y),

where

F̃ 1

k (x,y) =
1

2

k
∑

j=1

‖xj‖2 + C
m

∑

i=1

g1

i (x,y) and F̃ 2

i (x,y) = C
m

∑

i=1

g2

i (x,y).
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3.3 Auxiliary SVM-CLR problem

Problem (4) is nonconvex and it may have many local solutions. The success
of local search methods in finding global or near global solutions to this
problem strongly depends on the choice of starting points. Therefore, it is
imperative to use a special procedure to generate such points.

In order to design such a procedure, we apply an incremental approach.
This approach is similar to that introduced in [3], but instead of CLR prob-
lems, it is designed for SVM-CLR problems. The basic idea in the incre-
mental approach is that the solution for the SVM-CLR problem with k − 1
hyperplanes can be used to derive a good starting point for the SVM-CLR
problem with k hyperplanes. Since the solution is build incrementally we
next present the so-called auxiliary problem having a central role in the in-
cremental approach.

Let (x1, y1,x
2, y2, . . . ,x

k−1, yk−1) be the (global) solution of the SVM-
CLR problem with k−1 hyperplanes. The regression error of the data point
(ai, bi) ∈ A is denoted by

ri
k−1 = max

{

0, min
j=1,...,k−1

ei(x
j, yj) − ε

}

.

The kth auxiliary SVM-CLR problem is






min F̄k(u, v)

s. t. u ∈ R
n, v ∈ R

(7)

with the objective funtion

F̄k(u, v) =
1

2
‖u‖2 +

m
∑

i=1

min
{

ri
k−1, max

{

0, ei(u, v) − ε
}

}

. (8)

It is worth noting that, if ri
k−1 = 0 for (ai, bi) ∈ A then this point (ai, bi)

can be omitted from problem (7). Thus, the only interesting points in the
auxiliary problem are those for which ri

k−1 > 0. In addition, the auxiliary
SVM-CLR problem (7) is much easier and less time-consuming to solve than
the original SVM-CLR problem (4) due to the less number of variables.

Next, we show that the objective F̄k is a DC function.

Proposition 3.3. Let F̄k be the function defined in (8). Then F̄k is a DC
function and its DC decomposition can be written in the form

F̄k(u, v) = F̄ 1
k (u, v) − F̄ 2

k (u, v),

where the DC components are

F̄ 1

k (u, v) =
1

2
‖u‖2 +

m
∑

i=1

(

ri
k−1 + max

{

0, ei(u, v) − ε,
}

)

and

F̄ 2

k (u, v) =
m

∑

i=1

max
{

ri
k−1, max

{

0, ei(u, v) − ε
}

}

.

9



Proof. The DC decomposition is obtained by noticing that in (8) the term

min
{

ri
k−1,max{0, ei(u, v) − ε}

}

is a minimum of convex functions. Thus,

we can apply the case (i) of Lemma 2.3. This yields directly the result.

4 Double bundle method for SVM-CLR prob-

lems

In this section, we present a modified double bundle method (DB-SVM-CLR)
to solve SVM-CLR problems. The main idea in the new DB-SVM-CLR
method is to combine the best features of the double bundle method (DBDC),
[18] and the incremental algorithm [3] using the SVM-CLR formulation. The
DBDC is a local solution method for nonsmooth DC optimization, which
utilizes explicitly a DC decomposition of the objective function to take ad-
vantage of both the convexity and concavity of the objective. This way the
nonconvex cutting plane model represents the behaviour of the nonconvex
objective better than a convex model. Moreover, the DBDC is applied to
solve the SVM-CLR problem (4) and the auxiliary SVM-CLR problem (7)
at each iteration of the incremental algorithm. A more detailed description
of the algorithms follow.

4.1 DBDC method

For simplicity, we describe the DBDC method for a DC function f defined
on the n-dimensional space R

n. The DC structure of a function f = f 1 − f 2

has a central role in the method. We assume that at each point x ∈ R
n we

can evaluate the values of the DC components f 1(x) and f 2(x) as well as
arbitrary subgradients ξ1 ∈ ∂f 1(x) and ξ2 ∈ ∂f 2(x), respectively.

The main idea is to treat the DC components f 1 and f 2 separately in
the model construction. Therefore, we also form separate approximations of
the subdifferentials of these components. This is done by collecting subgra-
dient information from the previous iterations into two bundles, which are
represented as

Bi = {(yj, f
i(yj), ξ

i
j) | j ∈ Ji} for i = 1, 2,

where yj ∈ R
n is an auxiliary point, ξi

j ∈ ∂f i(yj) is the corresponding
subgradient and Ji is a nonempty set of indices. With this information we
construct a convex cutting plane model

f̂ i(x) = max
j∈Ji

{

f i(yj) + (ξi
j)

T (x − yj)
}

for the DC component f i, i = 1, 2. This model is the classical one used in
convex bundle methods (see e.g., [20, 24, 30]) and it supports from below the
epigraph of a convex function.
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The overall approximation of f is obtained by combining the separate
models of the DC components. Thus, the nonconvex cutting plane model of
f is

f̂(x) = f̂ 1(x) − f̂ 2(x)

and, due to its structure, it takes into account both the convex and concave
behaviour of f .

The approximation of f is used to determine the search direction dt ∈ R
n.

Therefore, at the current iteration point xk ∈ R
n we need to globally solve

the following nonsmooth nonconvex DC minimization problem






min f̂(xk + d) + 1

2t
‖d‖2

s. t. d ∈ R
n.

(9)

The quadratic term in this problem is a stabilizing term and the parame-
ter t > 0 is the proximity measure used in most bundle methods. Due to
the nonconvexity of problem (9), the challenge is to find the global solu-
tion. However, the objective in this problem has a special DC structure and,
thus, the global solution can be obtained quite easily by using an approach
presented in [21, 22] and utilized in [17].

When the direction dt is found, characteristic to bundle methods is to
decide whether to execute a serious step or a null step. In order to take a
serious step, the following descent condition

f(xk + dt) − f(xk) ≤ m
(

f̂(xk + dt) − f(xk)
)

(10)

needs to be satisfied, where f̂(xk + dt) − f(xk) < 0 is the predicted descent
and m ∈ (0, 1) is the descent parameter. This guarantees that the value of
the objective f decreases sufficiently and, thus, we can update the iteration
point xk+1 = xk + dt. Otherwise, if condition (10) does not hold, the used
model is not accurate enough to yield a descent and we need to execute a null
step. In this step, the aim is to improve the model by adjusting the proximity
measure t or updating the bundles and, therefore, we set xk+1 = xk.

The sequence of serious and null steps is executed until a stopping criteria
is satisfied. This requires that either the current iteration point xk is critical
satisfying ‖ξ1 − ξ2‖ < δ or ‖dt‖ < δ, where δ > 0 is the stopping tolerance
used in the algorithm. After finding such a point we execute the escaping
procedure [18] and it generates a new point x+. If x+ is the same as the
current iteration point xk then Clarke stationarity of the point xk is ensured
and the whole algorithm terminates. Otherwise, a solution candidate xk

is not Clarke stationary. In this case, the escaping procedure generates a
descent direction and we apply the DBDC method starting from a new better
point x+.
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Initialization:

x ∈ R
n, ξ1 ∈ ∂f1(x), ξ2 ∈ ∂f2(x),

B1 =
{

(x, f1(x), ξ1)
}

, B2 =
{

(x, f2(x), ξ2)
}

and the stopping tolerance δ ∈ (0, 1)

Criticality condition:

‖ξ1 − ξ2‖ < δ ?

Search direction:

Determine dt by
solving problem (9)

Execute
Escaping

procedure

to obtain a
points x+

Does x differ from a

point x+ obtained ?

New point:

Set y = x+.

STOP with
x as the

final solution

‖dt‖ < δ ?

Is the descent in f

enough ?

Null step:

Either decrease t

or
update the bundle
B1 and also B2

when needed.

New point:

Set y = x+dt.

Serious step:

Set x = y and calculate ξ1 ∈ ∂f1(x)
and ξ2 ∈ ∂f2(x). Update B1 and B2.

No

Yes

Yes

No

YesNo

No

Yes

Figure 1: DBDC method

The basic structure of the DBDC is presented in Figure 1. Suitable
starting points for the algorithm are obtained by utilizing the incremental
algorithm presented in the next subsection.

Before recalling the convergence results of the DBDC, we state the fol-
lowing assumptions:

A1 The set F0 = {x ∈ R
n | f(x) ≤ f(x0)} is compact for a starting point

x0 ∈ R
n.

A2 The subdifferentials ∂f 1(x) and ∂f 2(x) are polytopes at each x ∈ R
n.

These assumptions are trivially satisfied for both the SVM-CLR and auxiliary
SVM-CLR problems.

Lemma 4.1. [18] Let the assumptions A1 and A2 be valid. During the
DBDC, the execution of the escaping procedure stops after a finite number of
iterations.
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Theorem 4.2. [18] Let the assumptions A1 and A2 be valid. For any ε̃ > 0
and δ > 0, the DBDC terminates after a finite number of iterations at a point
x∗ satisfying the approximate Clarke stationarity condition

‖ξ∗‖ ≤ δ with ξ∗ ∈ ∂fG
ε̃ (x∗).

4.2 Incremental algorithm

Next, we introduce the incremental algorithm based on the method presented
in [3], but instead of CLR problems, it is modified to SVM-CLR problems.
The incremental algorithm starts with the calculation of one hyperplane ap-
proximating the whole data and gradually adds one hyperplane at each it-
eration until the required number of hyperplanes is calculated. During each
iteration this method also utilizes the auxiliary problem (7) to generate a
set of promising starting points for the SVM-CLR problem (4), since the
auxiliary problem is a lot easier and less time-consuming to solve than (4).

Initialization:

Compute the linear regression
function (x1, y1) ∈ R

n
× R for

the whole set A. Set l = 1.

Set l = l + 1.
Stopping condition:

l > k ?

Initialization of auxiliary

SVM-CLR problem:

Using the solution of the SVM-CLR
problem for l − 1 hyperplanes

define the set S1 of starting points
for the lth auxiliary problem (7).

Auxiliary SVM-CLR problem:

Apply the DBDC method to
solve problem (7) starting from x =
(u, v)T for each (u, v) ∈ S1. From
those solutions form the set S2 of
starting points for the SVM-CLR
problem (4) with l hyperplanes.

SVM-CLR problem:

Apply the DBDC method to
solve problem (4) starting from
x = (x1, y1, . . . ,x

l−1, yl−1, ū, v̄)
T

for each (ū, v̄) ∈ S2. The solutions
obtained constitute the set S3.

Solution for SVM-CLR

problem with l hyperplanes:

Choose the best solution from
the set S3 and denote it by

(x̂1
, ŷ1, . . . , x̂

l
, ŷl). Set xi = x̂

i

and yi = ŷi for i = 1, . . . , l.

STOP

Yes

No

Figure 2: Incremental algorithm in the DB-SVM-CLR method
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An algorithm based on the incremental algorithm and the DBDC method
is called DB-SVM-CLR. Therefore, this algorithm constructs clusters as well
as linear functions approximating them incrementally. This means that the
DB-SVM-CLR method do not solve just the SVM-CLR problem with k hy-
perplanes, but yields as the by-product solutions for each SVM-CLR problem
with a smaller number of hyperplanes.

The detailed description of the method is presented in Figure 2, where S1

denotes the set of starting points used at the initialization step for solving the
auxiliary SVM-CLR problem. This set is selected to be quite large whereas
the set S2 used to solve the SVM-CLR problem is typically much smaller and
contains only the best points obtained by using S1. In addition, we denote
by S3 the set consisting of the solutions for the SVM-CLR problem (4). The
detailed description of the selection of the sets S1, S2 and S3 is presented
in [3].

5 Numerical results

The aim of this section is to present some numerical results to prove the us-
ability of the SVM-CLR formulation (5) to solve the CLR problem. There-
fore, we illustrate the suitability of the SVM-CLR model and compare results
with a frequently used fit function. This way we are able to show the main
differences between these two functions and motivate the usage of the new
SVM-CLR formulation.

In the comparisons, we use the piecewise quadratic fit function

F̂k(x,y) =
m

∑

i=1

min
j=1,...,k

{

(xj)Tai + yj − bi)
2
}

. (11)

This fit function is frequently applied to solve CLR problems, for exam-
ple, in [3, 4, 19]. In order to minimize the fit function (11), we apply the
LMBM-CLR method [19] being designed to solve large-scale CLR problems
and it combines the incremental algorithm [3] and the limited memory bun-
dle method [14, 15]. Since the value of the fit function (11) is not comparable
with that of the SVM-CLR model, we illustrate results by drawing the solu-
tion hyperplanes in both cases and then compare them visually.

Algorithms are tested using six different data sets. Three of them are gen-
erated using known hyperplanes and the others are generated clusterwise. All
data sets have one numeric input and output variable to allow visualization
of results. The number of data points ranges from 100 to 1420. The brief
description of data sets is given in Table 1, where m stands for the number
of data points and n for the number of input variables. We use k for the
number of linear regression functions (or clusters).

The codes DB-SVM-CLR and LMBM-CLR of the above methods are imple-
mented in Fortran 95 and the subroutine PLQDF1 [23] is used in DB-SVM-CLR to
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Table 1: The brief description of the data sets

Data set m n

1 Two Lines 100 2
2 Three Lines 999 2
3 Four Lines 1100 2
4 Clusters 1 190 2
5 Clusters 2 1420 2
6 Clusters 3 1320 2

solve the quadratic problem (9). Both codes are compiled by using gfortran,
the GNU Fortran compiler, and performed on an Intelr CoreTM i5-2400 CPU
(3.10GHz, 3.10GHz) running on Windows 7.

In the following, the numerical results of DB-SVM-CLR are obtained by
using the DC decomposition presented in Proposition 3.1. Since the DC de-
composition can affect the performance of the method we calculated the re-
sults also with the other DC decomposition stated in Proposition 3.2. Those
results did not visually differ much from the ones presented here and, thus,
they are not included.

The parameters of DB-SVM-CLR are selected to be as follows: the regular-
ization parameter C = 1 and the stopping tolerance

δ =







10−4, for problem (7)

10−3, for problem (4).

The size of B1 is set to 50. For B2 the size is one for problem (7) and 3
otherwise. In the escaping procedure, we also use a bundle and its size is
set to 100. For the other parameters, we apply the default values [18], but
we set the value 1011 for the increase parameter R (see [18] for details). In
LMBM-CLR, we use the default values given in [19].

In Figure 3, the performance of the SVM-CLR formulation (5) on the
parameter ε is illustrated, and Two Lines data set is used for this purpose.
This data set is created by using two known lines and adding some random
noise and a couple of distinct outliers. When ε is close to zero, for example
0.5, we cannot yet observe a difference from the solution with ε = 0.0. More-
over, in both cases ε = 0.0 and ε = 0.5, we find hyperplanes describing the
data correctly. However, in the cases ε = 2.0 and ε = 3.0, we see that the
outliers have a significant influence. Thus, the parameter ε cannot be too
large since this can also completely distort the solution as is seen in Figure 3
when ε = 3.0. Since ε = 0.5 is not affected by outliers this justifies the usage
of a small positive ε > 0 allowing us to have more freedom in the solution
process. Therefore, in the rest of this section we use the value ε = 0.5.
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a) The solution for ε = 0.0
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b) The solution for ε = 0.5
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c) The solution for ε = 2.0
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d) The solution for ε = 3.0

Figure 3: Results for Two Lines data set with the SVM-CLR model (5),
k = 2 and different values of the parameter ε

The solution for Two Lines data set with k = 2 using the fit function
(11) is presented in Figure 4. We can see that in this case the solution is
considerably affected by outliers. This means that the use of the fit function
(11) does not lead to the finding of correct hyperplanes since two outliers
distort the solution. Thus, in this example the SVM-CLR formulation (5) is
more reliable than (11).
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Figure 4: Result for Two Lines data set with the fit function (11) for k = 2
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a) The SVM-CLR model (5)
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Figure 5: Result for Three Lines data set with k = 3

1 2 3 4 5 6 7

5

10

15

20

25

30

1 2 3 4 5 6 7

5

10

15

20

25

30

1 2 3 4 5 6 7

5

10

15

20

25

30

1 2 3 4 5 6 7

5

10

15

20

25

30

Figure 6: Results for Four Lines data set with the SVM-CLR model (5) and
different k

The results for Three Lines data set with both the new model (5) and the
fit function (11) are presented in Figure 5. This data set is generated based on
three different lines by adding some noise and outliers. The results show that
the fit function finds two out of three lines and the third line approximates the
outliers. However, the new SVM-CLR formulation manages to distinguish
correctly all the hyperplanes from the outliers. Thus, this example also shows
that the new model has ability to distinguish outliers.

In Figure 6, we present the solutions to Four Lines data set with the new
model (5) and different number of hyperplanes k = 1, 2, 3 and 4. Similar
to the previous example, this data set is generated by using four known
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Figure 7: Result for Four Lines data set with the fit function (11) and k = 4
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Figure 8: Result for Clusters 1 data set with the SVM-CLR model (5) and
k = 2, 3

hyperplanes and adding some random noise and outliers. This example shows
that the final number of hyperplanes should be chosen carefully since it affects
the final result and how well it describes the data. However, in this example
even in the cases k = 2 and k = 3, the use of the SVM-CLR formulation
allows to correctly identify two hyperplanes.

The solution for Four Lines data set with the fit function (11) and k = 4
is presented in Figure 7. This example shows that the fit function can have
great difficulties when data points cover the input space quite evenly. Now,
two hyperplanes are placed quite correctly and they affect the positioning
of the other two hyperplanes, which are just placed to cover the area of the
data evenly.

Next, we consider Clusters 1 data set, where there are four clusters with
some outliers. The solutions for the SVM-CLR formulation (5) and the
fit function (11) are presented in Figures 8 and 9, respectively. In the case
k = 2, the fit function provides an inaccurate solution since one hyperplane is
positioned between clusters and fails to give any useful information. However,
the SVM-CLR formulation provides quite an usable solution in the case k = 2
since each of the hyperplanes captures an approximation for two clusters.
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Figure 9: Results for Clusters 1 data set with the fit function (11) and k = 2, 3

Moreover, in the case k = 3 the solution with the SVM-CLR formulation
describes the data quite correctly, whereas the fit function (11) produces a
solution where one hyperplane only approximates the outliers.
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a) The SVM-CLR model (5)
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Figure 10: Result for Clusters 2 data set with k = 6
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The results for the largest data set Clusters 2 are presented in Figure 10.
This data contains six clusters and the vertical cluster on the left is difficult
to approximate since the slope of the hyperplane for this cluster is close to
infinity. Moreover, in the SVM-CLR formulation (5) we minimize the norm
of the slope of the hyperplane and, therefore, vertical hyperplanes are not
possible to detect. In spite of that, the SVM-CLR model is able to find
correctly four out of six hyperplanes. The vertical cluster is covered with
three different hyperplanes and this also affects the fact that we do not find
the best approximation for one horizontal cluster. Results for this data set
show that the fit function (11) can be sensitive to vertical clusters since the
solution just consists of horizontal hyperplanes covering the area of the data
evenly. Thus, the horizontal clusters are represented in the solution, but the
structure of the other clusters is not captured.
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a) The SVM-CLR model (5)
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b) The fit function (11)

Figure 11: Result for Clusters 3 data set with k = 5
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In Figure 11, we illustrate the solutions for Clusters 3 data set. This data
set resembles Clusters 2 data set, but it does not contain a vertical cluster.
Based on the pictures it is not possible to say which one of the solutions is
better. For example, the solution obtained with the SVM-CLR formulation
(5) described quite accurately the given data. However, for one cluster (left
top corner) the hyperplane is not accurate since the approximation of the
other clusters and the outliers distort the solution slightly. For fit function
(11), the solution is also quite accurate, but one hyperplane only approxi-
mates the outliers. In addition, by comparing Figures 10 and 11 we notice
that the absence of the vertical cluster can improve the solution considerably
since the fit function and SVM-CLR formulation are not able to detect this
kind of clusters.

6 Conclusions

In this paper, we have introduced a new SVM-CLR formulation to solve the
clusterwise linear regression (CLR) problem. The novelty in the formulation
is that the support vector machines (SVM) approach is incorporated into
the clusterwise linear regression problem. This way we have been able to
obtain more flexible and reliable model. The new SVM-CLR formulation is
presented as a difference of convex (DC) functions in order to capture both
the convexity and the concavity of the objective function.

In addition, we have introduced a new DB-SVM-CLR method to solve
the CLR problem designed by using the new SVM-CLR formulation. The
DB-SVM-CLR combines the double bundle method DBDC for nonsmooth
DC optimization with the incremental algorithm utilizing the SVM-CLR for-
mulation. This combination enables us to find global or near global solutions
since solutions are constructed incrementally by solving the SVM-CLR prob-
lems and the auxiliary SVM-CLR problems with the DBDC method.

To validate the usability of the SVM-CLR formulation, we have tested
the proposed DB-SVM-CLR method by using six different data sets. Three
data sets are generated by using known linear functions and three others
using known clusters. Such a choice of data sets allow us to demonstrate
the ability to detect linear functions for data sets having different data struc-
tures. Numerical results show that the DB-SVM-CLR method is efficient and
reliable to solve the CLR problems since it nearly always produces solutions
describing the data accurately. The comparison with the frequently used
piecewise quadratic fit function also supports this conclusion since the SVM-
CLR model outperforms this fit function in most data sets used in numerical
experiments. In addition, the new SVM-CLR formulation can tolerate out-
liers. This is a significant feature since outliers are common in data sets and
they can easily distort the solution.
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To conclude the numerical results show that the new DB-SVM-CLR al-
gorithm developed for the new formulation of the CLR problem has a good
performance. Nevertheless, there are still some open questions. First, it is
not clear how efficient the new algorithm is as a prediction tool. Moreover,
we have not considered the applicability of the DB-SVM-CLR for solving
large-scale CLR problems. Finally, the generalization ability of the new al-
gorithm is another important problem. All this will be the subject of the
future research.
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