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Abstract

Quantitative models may exhibit sophisticated behaviour that includes having
multiple steady states, bistability, limit cycles, and period-doubling bifurcation.
Such behaviour is typically driven by the numerical dynamics of the model, where
the values of various numerical parameters play the crucial role. We demonstrate
in this paper that such behaviour may also emerge in elementary set theoretical
forbidding/enforcing-based models, rather than quantitative models, through the
interplay of the interactions between the various components of the model. We
demonstrate this for the first time using reaction systems as our modelling frame-
work.

Keywords: Qualitative models; bistability; limit cycle; period-doubling bifurca-
tion; reaction systems.
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1 Introduction

During the recent years a shift in the focus of molecular biology is observed. It is
progressively moving from the determination of novel cellular components (e.g.,
transcription factors, genes, receptors) and the recognition of their individual func-
tions, to the comprehension of how ensembles of cellular components operate in
a concerted manner in order to receive, transmit, and process various stimuli into
system-level, complex physiological responses, see, e.g., [21, 8, 26]. The molecu-
lar machinery that underlies the regulation of complex cellular phenomena such as
proliferation, differentiation, and apoptosis, is being progressively uncovered and
characterised, see, e.g., [22, 23, 31, 10]. As our knowledge about the components
and modules necessary for proper functioning of a cell is constantly growing,
the resulting biological models become increasingly complex. As a consequence,
they become difficult or even impossible to intuit. Sketched-out drawings, flow
charts, and other forms of static diagrams used sometimes by biologists become
insufficient to identify and analyse system-level functionalities and their charac-
teristics. They are undergoing a transformation from purely static representation
of biological knowledge into dynamical computational models, which can pro-
vide insights into the functioning of the systems. Analytical and predictive power
of computational modelling and formal reasoning becomes more and more es-
sential for our understanding of biology, in particular the comprehension of how
compositions of cellular components lead to various, common types of emergent
behaviour.

Bistability is one example of a system-level characteristic property recurring
in the description of various cellular systems ([1, 29]). Bistable systems are ones
that toggle between two alternative stable states. They are considered to impose
switch-like biochemical behaviour. There exists a number of reviews in the liter-
ature that present theoretical and experimental advances that cast light on what is
needed for a biological system to exhibit bistability, e.g., [20, 30, 29].

Limit cycle oscillation is another system level behaviour of interest for this
study. The usefulness of limit cycles in describing periodic biological and eco-
logical phenomena (like the Lotka-Volterra system [18]) make them a compelling
subject to study. In a dynamical system with limit cycle, all stable periodic trajec-
tories are attracted to a unique unstable steady state [15].

Period-doubling bifurcation is another interesting system level behaviour which
is well connected to chaotic behaviour in nature. This mode of deterministic chaos
is a common pattern in living organisms, see [16]. In a system with a period-
doubling bifurcation, a slight change in the system’s parameters, makes an ini-
tially stable cycle of length k unstable, and produces a new stable cycle of length
2k, see [27].

The analysis and understanding of these behaviours are typically performed
in the realm of quantitative models, in particular models based on ordinary differ-
ential equations. In such models, the characteristics of a system are usually gen-
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erated through a quantitative interplay between the well-chosen numerical values
of the kinetic constants and of the initial concentrations of the variables. This is
to some extent unsatisfactory, being governed by numerical setups that say noth-
ing about the structure (nature) of the system under study. Therefore, our insight
into the causes of and the mechanisms driving these behaviours remain on a very
basic level of detail. In this study, we take a qualitative view to explore different
behaviours of a dynamical system. By taking such an approach and removing
all numerical dependent features and replacing them by the qualitative elements
that the numbers are derived from, we aim to identify structural mechanisms that
can lead to bistability, limit cycles, and bifurcations. Several studies have em-
ployed Boolean frameworks to demonstrate the above mentioned behaviours, see
for example [2, 17, 24]. We address the problem on an elementary level here,
by adopting reaction systems as our modeling framework. We show bistability,
limit cycle oscillations and period-doubling bifurcation may emerge using only
elementary set-theoretical operations.

The article is structured as follows. In Section 2 we introduce a few basic def-
initions of reaction systems. In Section 3 we describe the link between dynamical
systems and reaction systems. In Section 4- 6 we introduce the notions of multi-
stable, mono-stable and periodic reaction systems and provide some examples
having these properties. We conclude with a brief discussion in Section 7.

2 Reaction systems
Reaction systems (RS), introduced in [12], is a qualitative framework inspired by
the functioning of the living cells. There are only two main regulation mecha-
nisms, facilitation and inhibition, in reaction systems, that drive the interactions
between reactions. Intuitively a reaction is enabled when all components needed
to facilitate the reaction are present and all components which inhibit such a fa-
cilitation are absent from the environment. Based on this intuition a reaction is
formalised as a triplet: its reactants, its inhibitors, and its product set.

In the world of reaction systems, reactions are the pivotal ingredients and it
is reactions that lead the transformation of the system from one state to the other.
This modelling approach provides a causal insight for the modeller and facilitates
a better understanding of the cause-effect relationships of the reactions and conse-
quently of the model as a whole. In contrast, in traditional modelling approaches
one mainly deals with the outcome of a process and not with the process itself.
Another point that makes reaction systems an interesting tool for modelling is its
qualitative nature and how it deals with the phenomena under study only through
the facilitation and inhibition mechanisms. There are two main assumptions con-
sidered in the reaction systems framework:

• The threshold assumption. It is assumed that either an element is present
in the environment in abundance or it is absent from it. This implies that
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there is no counting in (the basic formulation of) the RS framework and as
a result, reaction systems are qualitative, rather than quantitative;

• The no permanency assumption. It is assumed that an element vanishes
from the environment if no reaction is triggered to preserve it. This follows
the basic energetics of the living cells, where all the different components
are actively supported through energy, i.e., through various cellular reac-
tions.

The two main assumptions of the reaction systems framework yield a very
different modelling framework than in traditional ODE-based modelling. For ex-
ample, concurrency on resources between different reactions is described in re-
action systems through facilitators and inhibitors, rather than through a competi-
tion driven by the numerical values of kinetic constants as in ODE-based model.
This provides a deeper and more explicit understanding of the phenomenon under
study. We refer to [5] and [6] for two biological models implemented in reaction
systems including a comparison with the corresponding ODE-based models.

We recall some basic definitions of reaction systems. For details we refer
to [12].

A reaction is a triplet of non-empty, finite sets: a = (Ra, Ia, Pa), where Ra ∩
Ia = ∅. The sets Ra, Ia, Pa stand for the set of reactants, inhibitors, products of
a, respectively. Given a set S, if Ra, Ia, Pa ⊆ S, then a is a reaction in S. The set
of reactions in S is denoted by rac(S).

Let A be a finite set of reactions, T a finite set, and a ∈ A.

(i) The result of a on T , denoted resa(T ), is

resa(T ) =

{
Pa, if Ra ⊆ T and Ia ∩ T = ∅
∅, otherwise.

(ii) The result of A on T , denoted resA(T ), is

resA(T ) =
⋃
a∈A

resa(T ).

A reaction system (RS in short) is defined as an ordered pair A = (S,A),
where S is a finite set and A ⊆ rac(S). The set S is called the background (set)
of A.

Let A be a reaction system. An interactive process in A is a pair π = (γ, δ),
where γ = C0, C1, ..., Cn, δ = D0, D1, D2, ..., Dn ⊆ S, n ≥ 1, with D0 = ∅
and, for each 1 ≤ i ≤ n, Di = resA(Ci−1 ∪ Di−1). The sequence γ is the
context sequence of π. The state sequence of π is τ = W0,W1, ...,Wn, where
Wi = Ci ∪Di, for all i ∈ {0, ..., n}. We denote the final state Wn by fst(π); since
Wn is completely defined by the context sequence γ, we also write Wn =fst(γ).
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Note that the dynamics of a reaction system can also be represented by a state
transition diagram, where the nodes are the elements of the RS state space and the
directed edges are labeled by the given context at each state.

We say that D ⊆ S is a steady state of A for context C if resA(C ∪D) = D.
For details about this notion we refer to [5] and [3].

3 Dynamical Systems and Reaction Systems
In this section we briefly describe the link between dynamical systems and reac-
tion systems; this was originally discussed in [7].

Dynamical systems (either continuous or discrete) are defined through their
structures (e.g., ODEs, probabilistic transitions, etc.) and through their numerical
setup (e.g., initial conditions, kinetic or stochastic constants). The structure of
dynamical systems, together with their numerical setup, define the trajectories
of the system. In this paper we are mirroring a dynamical system’s trajectories
through a reaction system’s state transition diagram. To do this we fix the initial
state of the RS to correspond to the initial conditions of the dynamical system.
The numerical setup of the dynamical system is represented through a constant
context sequence. In case we need to observe changes in the dynamical system as
an effect of changing its numerical setup, we will consider a non-constant context
sequence.

Note that, by applying a few changes in the set of reactions of an RS, a constant
non-empty context sequence can be replaced with an empty context sequence, as
shown in the next lemma.

Lemma 3.1. Let A = (S,A) and γ = C,C, ..., C a constant context sequence.
Let τ = W0,W1, ...,Wn be the state sequence corresponding to γ in A. There
exists a reaction system A′ = (S,A′) such that τ = W0,W1, ...,Wn is the state
sequence corresponding to the empty context sequence.

Proof. Let A′ = (S ∪ {dI}, A′) and A′ = A ∪ {(C, dI, C)}, where dI is a new
symbol. The result easily follows.

4 Multi-stable Reaction Systems
In this section we introduce the notion of multi-stable reaction systems and then
present some formal properties of such systems. We later provide an example of a
bio-inspired dynamical system as a special case of multi-stable reaction systems.

Definition 1. We say that A = (S,A) is a multi-stable reaction system if there
are at least two different initial states such that with a constant context sequence,
their corresponding interactive processes lead to distinct steady states.
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The following result proves the existence of reaction systems with any fixed
number of steady states.

Lemma 4.1. For any given set S of size n and any 0 ≤ k ≤ 2n, there exists a
reaction system A = (S,A) with exactly k steady states.

Proof. Let S = {s1, . . . , sn} and 0 ≤ k ≤ 2n. Let T be a state transition diagram
where the node are the 2n subsets of S where there is a self loop on the nodes
{s1}, . . . , {sk} and the edges from all other nodes are directed to the node {s1}.
We label all the arcs with empty sets. It is shown in [7] that any finite state transi-
tion diagram can be translated to a reaction system; therefore the above mentioned
diagram can be translated to a reaction system with S as its background set. Such a
reaction system is a multi-stable reaction system with exactly k steady states.

Bistable systems, where the biological systems have the capacity to operate in
two distinct modes, in a stable manner, are an example of multi-stable systems.
Typically, the system can switch from one stable mode to the other in response
to a specific external input. Mathematically, these bistable systems are usually
described by models that exhibit two distinct stable steady states [9]. Bistability
is a recurrent motif in biology, and there are many examples of systems which can
operate, in a stable manner, in two very distinct modes. For instance, in the well
known lac operon in the bacteria Escherichia coli, a group of genes are repressed
in the presence of glucose and transcribed in the combined absence of glucose and
presence of lactose [19, 28].

The smallest chemical reaction system with bistability is presented in [33]. It
consists of the minimal number of reactants, reactions, and terms in the associated
system of ordinary differential equations (ODEs). The reactions corresponding to
the minimal bistable system of [33] and their corresponding ODEs are presented
in Table 1. Fig. 1 illustrates the behaviour of the minimal bistable system of [33].
As it can be seen, for lower levels of the input signal S, the system has only one
base-level steady state x = 0. As the level of S increases, the system undergoes
a saddle-node bifurcation, which renders the system bistable. This behaviour is
observable in Fig. 1 at S = 4: beyond that point the system has one more stable
steady state in addition to x = 0 (as well as another unstable steady state).

The process can be reversed: for a high level of the signal strength, the system
is bistable. As the signal decreases and reaches the lower saddle-node bifurcation
point, the drastic jump to the lower steady-state will occur.

In this section we are proposing a counterpart in the reaction systems frame-
work of the example in [33]. We discuss the qualitative behaviour of such a sys-
tem.

We construct the RS model corresponding to the minimal reaction network
of [33] by going through its reactions and introducing corresponding counterparts
in the reaction system framework. We then check if this proposed model indeed
exhibits a bistable behaviour. In the background set we introduce variables x,
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Table 1: The reactions and the ordinary differential equations corresponding to
the minimal bistable system of [33].

Reaction

S + y
k1−→ 2x (1)

2x
k2−→ x+ y (2)

x+ y
k3−→ y + P (3)

x
k4−→ P (4)

Ordinary differential equations

dx

dt
= 2k1Sy − k2x − k3xy − k4x

dy

dt
= k2x

2 − k1Sy

Figure 1: Minimal bistable system: The figure shows two stable steady states
(solid lines) and one unstable state (dotted line).

y corresponding to the variables of the ODE-based model. We also introduce
variables s, S to distinguish between low and high external signal, allowing for
capturing the bistability switch. Finally, we also use (as usual in RS modeling) a
dummy inhibitor variable dI. We are ignoring variable P in our RS model. The
RS reactions are presented in Table 2. A state transition diagram corresponding
to this reaction system is given in Fig. 2.

Behaviour. The chemical reaction network of [33] has the following qualitative
behaviour corresponding to its steady states:

• it has a single stable steady state for the small concentrations of substrate,
and

• it has two stable steady states and one unstable steady state for large con-
centrations of substrate.

A steady state in reaction system is defined in correspondence with a specific
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Table 2: The reactions in the reaction systems corresponding to the minimal
bistable system of [33], the background set for the reaction systems is {s, S, x, y}.

Reactions in bistable reaction system
({S, y}, {dI}, {x})

({x}, {dI}, {y})

({x, y}, {S}, {y})

∅

s,S

��
x, y

S





s

��
x

s,S // y
S

jj

s

``

Figure 2: The state transition diagram of the RS corresponding to the minimal
bistable system of [33].

context. We consider {s} and {S} to be two fixed contexts corresponding to
the low signal and the high signal levels respectively. A state transition diagram
corresponding to this reaction system is given in Fig. 2 where the labels on the
arcs represent the fixed context that facilitates the transition. It is clear from the
state transition diagram that a constant context sequence {s} takes the system
from any state to state ∅. It is also clear that under constant context sequence
{S} the system remains either in state ∅ or in state {x, y}, showing that it has two
stable steady states. As a side remark, note also that the system cycles between
states {x} and {y} under constant context sequence {S}. This can be interpreted
as correspondence to the third unstable steady state of the ODE-model under high
external signal.

Lemma 4.2. The reaction system built in this section is minimal in terms of the
number of reactants needed for a multi-stable system.

Proof. The result follows from the observation that any such system has at least
two distinct steady states and consequently needs at least two distinct reactants.
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(a) (b)

Figure 3: Limit cycle behaviour: (a) closed loop; (b) periodic oscillations.

5 Mono-stable Reaction Systems
In this section we introduce the notion of mono-stable reaction system and provide
an example of a bio-inspired dynamical system with similar behaviour.

Definition 2. We say that A = (S,A) is a mono-stable reaction system if there is
exactly one initial state such that for a constant context sequence, its correspond-
ing interactive process leads to a steady state.

Note that any other initial state with a constant context sequence lead to a
cycle of length greater than one. In the special cases where all these cycle are the
same, the reaction system exhibits the behaviour similar to the biological systems
with limit cycle. We formulate a definition for reaction systems with limit cycle
as follows.

Definition 3. We say that A = (S,A) is a reaction system with limit cycle if
there is exactly one initial state such that for a constant context sequence, its
corresponding interactive processes leads to a steady state and all other initial
states with a constant context lead to a unique cycle of length greater than one.

Being able to explain the oscillatory phenomena in biological systems makes
the limit cycle one of the most interesting kinetic behaviours [11]. A cycle with
length greater than one in the phase space is called a limit cycle (a cycle of length
one is a steady state). It is known that in a dynamical system with limit cycle be-
haviour, there is a unique unstable steady state surrounded by stable periodic tra-
jectories that converge to the steady state [15]. Limit cycles have proven to be use-
ful in describing periodic processes in nature, e.g. the Lotka-Volterra system [18].
That is why finding such trajectories is an interesting subject to study [17].

Fig. 3(a) shows the typical behaviour of systems with limit cycle where all
trajectories in the neighbourhood spiral towards the limit cycle. Fig. 3(b) a system
with periodic behaviour.

It is known that a small modification of the numerical parameters of a dynami-
cal system may make it switch from a bistable behaviour to one with a limit cycle,
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Table 3: The reactions and the ordinary differential equations corresponding to
the minimal chemical system with limit cycle of [33].

Reaction

S + x
k′
1−→ 2x (5)

x+ y
k′
2−→ y + P (6)

y
k′
3−→ P (7)

x
k′
4−→ z (8)

z
k′
5−→ y (9)

Ordinary differential equations

dx

dt
= (k′1 − k′4)x− k′2xy

dy

dt
= k′5z − k′3y

dz

dt
= k′4 − k′5z

see [13]. Following this suggestion we build a reaction system corresponding to
the chemical reaction network of Table 3 by tweaking the reaction system built
in the previous section. We modify the reaction system of Table 2 by adding an
inhibitor to its first reaction. The result is also presented in Table 4.

Similar to the previous section, we consider {s} and {S} to be two fixed con-
texts corresponding to the low and the high signal levels respectively. A state
transition diagram corresponding to this reaction system is given in Fig. 4 where
the labels on the arcs represent the fixed context that facilitates the transition.
Similar to the behaviour of the chemical reaction networks with limit cycle, the
constant context sequence {s} leads to the steady state ∅. Under a constant con-
text sequence {S}, our model may either end in steady state ∅ or cycle between
states {x} and {y}.

Table 4: The reactions in the reaction systems corresponding to the minimal chem-
ical system with limit cycle of [33], the background set for the reaction systems is
{s, S, x, y}.

Reactions in reaction system with limited cycle
({S, y}, {x}, {x})

({x}, {dI}, {y}

({x, y}, {S}, {x})
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s,S

��
x, y

s,S

��
x

s,S // y
S

jj

s

``

Figure 4: The state transition diagrams the RS corresponding to the minimal
chemical system with limit cycle of [33].

6 Periodic Reaction Systems
In this section we introduce the notion of periodic reaction system and provide an
example of a dynamical system with similar behaviour.

Definition 4. We say that A = (S,A) is a periodic reaction system if the corre-
sponding interactive processes of all initial states for a constant context sequence
lead to cycles of length equal or greater than one.

An example of periodic behaviour in nature is the period doubling bifurca-
tion. A period-doubling is a bifurcation in which a minimal modification of a
parameter value causes the system to switch to a new behaviour where the period
of the system is twice as large as the original one. A period-doubling cascade
is a sequence of doublings of the period, from one state to the other. For details
on period-doubling bifurcation we refer to [27, 25]. Understanding the period-
doubling behaviour is of utmost important since it facilitates the better explain-
ing, and possibly controlling, the chaotic phenomena occurring in nature, see for
example [14] and [32].

Fig. 5 illustrates a period-doubling bifurcation for the discrete dynamical sys-
tem xn+1 = r − x2n where x0 and r belong to the intervals [−2, 2] and [0, 2]
respectively.

The cascade of period-doubling can be viewed as a binary counter with ad-
justable length, i.e., for every 1 ≤ i ≤ n, the period i is of length 2i and each state
of the period i is labeled with a binary number between 0 and 2i as depicted in
Fig. 6. We use this intuition in building a periodic reaction system corresponding
to a dynamical system with period-doubling behaviour. In this model the change
from period i to period j of the system is triggered by having trigger j introduced
into the system by the context. A binary counter RS model has been introduced
in [12] and our model is an extension of that model. We introduce a few new
reactions to the system to have control over the length of the counter as well as to
facilitate the transition from one period to the other.
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Figure 5: Period doubling cascade.

Definition 5. Let A = (S,A) be a reaction system such that S = {e0, . . . , en, t, 1, . . . , n},
where e0 denotes the start of the counting, ei represents 1 on the ith position in
the binary notation for some 0 ≤ i ≤ n, t is the trigger for ending the counting
process and 1 ≤ i ≤ n is the threshold for the binary counter. The set of reactions
A is defined as:

• a10 = ({e1}, {e0, t}, {e1}),

• aij = ({ei}, {ej, t, 1, . . . , i− 1}, {ei}), for all i, j such that 1 ≤ j < i ≤ n,

• b1 = ({e0}, {e1, t}, {e1}),

• bi = ({e0, . . . , ei−1}, {ei, 1, . . . , i−1, t}, {ei}), for all i such that 2 ≤ i ≤ n,

• r1 = ({e0}, {t}, {e0}),

• r2 = ({e0, t}, {e1, . . . , en}, {e0},

• l = ({t}, {e0}, {e0}),

• qi = ({e0, . . . , ei, i}, {t}, {t}), for all i such that 1 ≤ i ≤ n,

• si = ({i}, {t, i+ 1, . . . , n}, {i}), for all i such that 1 ≤ i ≤ n.

In the reaction system of Definition 5 reactions a10, aij, b1, bi, r1, l and qi for
all i, j such that 1 ≤ j < i ≤ n, are adopted from the reaction system of [12]
with small modifications respecting the newly introduced counting upper bound
in our study. This set of reactions is responsible for the binary counting as well as
ending the process whenever trigger {t} is introduced in the system.

Reaction a10 guarantees that if e0 is not present, then the incrementing process
is not performed, while it takes place otherwise.
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Figure 6: Period-doubling cascade illustrated as a binary counter.

For all {i, j} such that 1 ≤ j < i ≤ n, the reaction aij is defined by aij =
({ei}, {ej, t, 1, . . . , i − 1}, {ei}). Therefore, aij produces ei as long as ej and
ending trigger t are not present and the counter threshold is greater than i. Thus,
if a binary number has 1 on the ith position and 0 on the jth position, where j < i,
its successor still has 1 on the ith position.

For each 2 ≤ i ≤ n, the reaction bi is defined by bi = ({e0, . . . , ei−1}, {ei, 1, . . . , i−
1, t}, {ei}) to produce ei if ei is not present while all of e0, . . . , ei−1 are present.
Thus, bi inserts 1 to the ith position when 1 is added to a number that has 0 on
position i and 1 on each position smaller than i, the ending trigger is not available
and the counter threshold is greater than i.

Reaction l starts the counting by adding e0 to the current state when the trigger
t is introduced.

Reactions qi, for all 1 ≤ i ≤ n, stop the counter when the binary number has
reached its threshold.

Reaction r1 keeps e0 in the system as long as t is not added to the system.
Reaction r2 resets the system and reactions si, for all 1 ≤ i ≤ n, are respon-

sible for respecting the given counter upper bound as well as switching from one
period to the other.
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Note that for switching from one period to the other, the new upper bound (and
new period) i needs to be introduced to the system through the context.

To better illustrate the behaviour of this reaction system, we provide an ex-
ample here. The state sequence corresponding to the initial state {e0, 3} with an
empty context sequence is: {e0, 3}, {e0, e1, 3}, {3, e0, e2}, {3, e0, e1, e2}, {3, e0, e3},
{3, e0, e1, e3}, {3, e0, e2, e3}, {3, e0, e1, e2, e3}, {3, e0, t}, which, based on our de-
fined notions, translates to the following binary sequence: 000, 001, 010, 011, 100, 101, 110, 111, 000.
This sequence represents the period of length 23 in our period-doubling reaction
system. Note that any other initial state {e0, k} would enter the period of length
2k.

7 Discussion

We continued in this paper the line of research initiated in [5, 4, 3] to bring to
the framework of reaction systems different modelling concepts such as mass-
conservation, steady state, periodicity, elementary fluxes, invariants, stationary
process, multi-stability, bifurcation. The aim of this line of research is two folded.
On one hand, it aims to provide a biomodeller with a set of basic modelling tools
and concepts to serve her in building and analysing a biomodel with reaction sys-
tems. There are clear advantages in using reaction systems as a modelling frame-
work alongside traditional (both quantitative and qualitative) modelling frame-
works; to mention only two: the transparent causality between events taking place
in a system, and the explicit formulation of the mechanisms responsible for trig-
gering a reaction, in terms of facilitation and inhibition. On the other hand, this
line of research aims to demonstrate the surprising expressive power of reaction
systems, given the elementary nature of the mathematical structures they are based
on.

We demonstrated that sophisticated dynamical behaviours such as exhibiting
arbitrarily many steady states, bistability, limit cycles, and period doubling can be
reproduced in the reaction systems framework. Such behaviours are usually ex-
hibited through quantitative mechanisms driven by well chosen numerical setups.
We introduced in this paper natural correspondents of these concepts for reaction
systems and showed that they can emerge as a result of simple reaction systems
models. This is consistent with earlier results of [17, 24, 2] that such patterns may
be obtained through Boolean algebra-based mechanisms. Instead we use in this
paper the elementary set theoretical framework provided by reaction systems.
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